
University of Ljubljana
Faculty of Mathematics and Physics

Department of Physics

Seminar

End-to-End Classification
for Discovery of New Processes

in High-Energy Physics

Author: Elijan Mastnak
Adviser: prof. dr. Borut Paul Kerševan



What is Particle Classification?
Classification
Two high-energy particles collide. Which particles
were produced as a result of the collision?

We will consider binary Higgs boson classification:
I Higgs boson (signal)
I anything else (background)
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End-to-End Classification
I Directly uses raw detector data

I Eliminates complicated intermediate steps
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What is the Detector Data?
The set of measured physical quantities describing
the products of a particle collision

I Produced by: Large Hadron Collider (LHC)
I Measured by: Compact Muon Solenoid (CMS)

We will explain:
1. proton acceleration and collision at the LHC
2. physical principles of CMS subdetectors
3. how to interpret CMS detector data
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Proton Acceleration at the LHC
Sequence:
1. hydrogen ions
2. boosting stages
3. LHC
4. nominal

collisions points
5. detectors

Adapted from [4]

∼ 7 TeV proton energy
∼ 1011 particles per bunch
∼ 25 ns between collisions
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Collision
I Two protons (rarely!) collide head-on
I Chain of secondary interactions
I Resulting particles are the decay signature
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Video: proton-proton collision at the ATLAS detector [3]



An Important Limitation
I Interesting particles decay rapidly

(τH ∼ 10−22 s)
I We cannot detect a Higgs directly
I All we see is the decay signature
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Quantifying a Decay Signature
A particle detector measures:
I particle trajectory (using trackers)
I particle energy (using calorimeters)

With detector data, we can reconstruct:
I particle identity
I particle momentum
I production and decay vertices...
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The Compact Muon Solenoid

Adapted from [5]
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The CMS Coordinate System I
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The CMS Coordinate System II
Pseudorapidity η preferred over θ

η ≡ − ln

(
tan

θ

2

)
=⇒ θ = 2 arctan e−η
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Tracker: Measuring Trajectory
Working Principle
I Reverse-biased semiconductor
I Charged particle frees electron-hole pair
I Electron-hole pair registered as charge pulse

For orientation...
I 13 concentric layers of silicon pixels and strips
I Dimensions ∼ 10 µm to 100 µm

I ∼ 75 million read-out channels
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Electromagnetic Calorimeter (ECAL)
I Measures energy of electromagnetically

interacting particles
I Lead tungstate (PbWO4) scintillator crystals
I Dimensions ∼ 2 cm× 2 cm× 20 cm

I ∼ 75 000 total scintillator crystals

Source: [2]
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ECAL Working Principle
I Incident particle produces electromagnetic

shower
I Electromagnetic shower excites (PbWO4)

scintillator
I Scintillator emits scintillation photons
I Photons free photoelectrons in reverse-biased

semiconducting photodetector
I Photodetector registers photoelectrons as

electric signal
U0 ∝ Ne− ∝ Nγ ∝ Edep
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Hadronic Calorimeter (HCAL)
I Measures energy of hadronic particles
I Brass absorbers and plastic scintillators
I Working principles similar to ECAL

16



Detector-Data I

Adapted from [1]

I image-like pixel grid
I 2 spatial dimensions (φ, η)
I 3 detector channels (Tracker, ECAL, HCAL)
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Detector-Data II

There is a direct physical correspondence between
pixel values and particle position and energy

pixel intensity ⇐⇒

{
charge in Tracker
energy in ECAL/HCAL

pixel position ⇐⇒ position of...


silicon pixel
ECAL crystal
HCAL tile
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Classification Options
(a) End-to-end classification: directly use

image-based detector data

(b) Kinematic-based classification: first
reconstruct kinematic features

(c) High-level classification: first reconstruct
kinematic features, then hand-engineer
custom high-level features

We will call (b) and (c) traditional classification.
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Traditional Classification
(a) Training

I Simulate collision data (∼ 106 collisions)
I Train neural network with simulated data

(b) Application
I Reconstruct kinematic quantities describing each

LHC collision (xfeature)
I Pass quantities into fully-connected network
I Output classification result
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Understanding a Classifier’s Output
I True result: y =

(
ysig
ybg

)
(known from simulation)

I Prediction: ŷ =

(
ŷsig
ŷbg

)
I Classes represented by binary 1/0 values
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Anatomy of a Fully-Connected Network
I Hierarchy: (i) neuron (ii) layer (iii) network

I Input layer: collision information enters
I Hidden layers: calculations
I Output layer: classification scores

22



Anatomy of a Fully-Connected Network
I Hierarchy: (i) neuron (ii) layer (iii) network
I Input layer: collision information enters

I Hidden layers: calculations
I Output layer: classification scores

22



Anatomy of a Fully-Connected Network
I Hierarchy: (i) neuron (ii) layer (iii) network
I Input layer: collision information enters
I Hidden layers: calculations

I Output layer: classification scores

22



Anatomy of a Fully-Connected Network
I Hierarchy: (i) neuron (ii) layer (iii) network
I Input layer: collision information enters
I Hidden layers: calculations
I Output layer: classification scores

22



A Single Neuron
I Essentially a multi-variable scalar function
I Input: output of all neurons in previous layer
I Output: a scalar activation value a ∈ R

Two steps:
(i) linear weighted sum z = w · aprev + b

(ii) non-linear activation a = fa(z)

(i) z=w·aprev+b ∈ R
(ii) a=fa(z) ∈ R
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Activation Function
Non-linear function of pre-activation value

a = fa(z) = fa
(
w·aprev+b

)
∈ R

Non-linear activation functions allow non-linear
decision boundaries!
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Activation Function
Non-linear function of pre-activation value

a = fa(z) = fa
(
w·aprev+b

)
∈ R

I Common functions:
ReLU and variants,
sigmoid, tanh, etc...

I (Generally)
continuously
differentiable

I ReLU common in CNNs
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A Network Layer
I Weight vectors w −→ weight matrix W
I Biases b −→ bias vector b
I Activation a −→ activation vector a

Two steps:
(i) linear affine transformation z =W>·aprev+b

(ii) non-linear activation a = fa(z)

(i) z =W>·aprev+b ∈ Rn

(ii) a=fa(z) ∈ Rn

25



A Network Layer
I Weight vectors w −→ weight matrix W
I Biases b −→ bias vector b
I Activation a −→ activation vector a

Two steps:
(i) linear affine transformation z =W>·aprev+b

(ii) non-linear activation a = fa(z)

(i) z =W>·aprev+b ∈ Rn

(ii) a=fa(z) ∈ Rn

25



Interpreting a FCN
I F features (input) and C classes (output)
I Input: features x ∈ RF and labels y ∈ RC

I Output: classification scores ŷ ∈ RC

A FCN is a vector function h : RF → RC

parameterized by weights W(l) and biases b(l)

Training Goal
Find optimal values W(l)

opt and b
(l)
opt such that

prediction ŷ = h(x) matches label y
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Optimization
I Loss L : RC → R quantifies difference

between prediction ŷ and true result y
I Input predictions ŷ ∈ RC , output loss L ∈ R
I Example: categorical cross entropy

L(ŷ;y) = −
C∑
c=1

yc ln ŷc

We optimize weights and biases by minimizing
loss!

...using numerical methods for multi-dimensional
minimization problems adapted to very large
parameter spaces and huge datasets.
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End-to-End Classification
Recall our image-based detector data...
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End-to-End Classification
Recall our image-based detector data...

End-to-end classification looks like this:
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Motivation for Convolutional Networks
Let’s examine the input data...
I stored as multi-dimensional arrays
I one channel axis for different subdetectors
I two spatial axes for coordinates ϕ and η

Spatial structure stores physical information!
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Motivation for Convolutional Networks II
The Goal of Convolutional Networks
Preserve and leverage the information encoded in
an input image’s spatial structure
...in a way that FCNs, limited to flattened,

one-dimensional vector inputs, cannot.

We need a space-preserving way for CNNs
to interact with input images!
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Discrete Convolution
I Intuitively: “scan” 2D image with 2D “filter”
I Mathematically: convolve image with

convolutional kernel
I Kernel has weights and bias (like FCN neuron)
I Parameters detect distinguishing features
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Discrete Convolution Examples
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Discrete Convolution Examples
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Generalizations...
Multi-channel images
I Input images (3D) have multiple channels...
I So use a multi-channel (3D) kernel!
I Sum across channel axis to get 2D output
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Generalizations...
Multiple kernels
I Like multiple neurons in an FCN
I Each kernel captures a specific feature

(edges, curves contrasting colors, shapes...)
I Output feature map is then 3D
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(Max) Pooling
Goals:
I spatially downsample input
I introduce invariance to local translations
I preserve channel dimension

Operation: A pooling kernel outputs maximum
pixel value at each kernel position in input

35



(Max) Pooling
Goals:
I spatially downsample input
I introduce invariance to local translations
I preserve channel dimension

Operation: A pooling kernel outputs maximum
pixel value at each kernel position in input

35



Max Pooling Examples
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Max Pooling Examples
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CNN Architecture
Typical convolutional layer sequence:
(a) convolution
(b) non-linearity (e.g. ReLU)
(c) pooling

Repeat... (not shown)
Flatten; use fully-connected layer for output
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A Concrete Case Study
Andrews et al. End-to-End Physics Event
Classification with CMS Open Data. 2020. [1]
I Higgs boson classification with CMS data
I Signal: gg → H0 → γγ

I Background 1: qq̄ → γγ

I Background 2: qq̄ → γj
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Why the Processes Are Interesting
(a) irreducible backgrounds

(b) unresolved decay products
γj ≈ γγ =⇒ bg 1 ≈ bg 2 ≈ sig

for reference...
sig: gg → H0 → γγ bg 1: qq̄ → γγ bg 2: qq̄ → γj
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Example: Photon-Jet Classification
Task: classify gg → H → γγ and qq̄ → γj
Challenge: unresolved decay products
I Comparison:

CNN vs. FCN
I CNN performs

much better!

ROC curve adapted from [1] 40



Interpretation
Recall the input image...
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Interpretation
What a CNN sees What a FCN sees

pT ≈ 55 GeV

ϕ ≈ 136°
η ≈ 1.10 (θ ≈ 37°)

pT ≈ 65 GeV

ϕ ≈ 335°
η ≈ −0.14 (θ ≈ 98°)
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Takeaways and Conclusion

CNNs can distinguish shower distribution patterns
even when kinematic quantities are identical.

Promising aspects of end-to-end classification
I Preserve maximum available information
I Learn from spatial distribution
I Flexible and general classification framework

Thank you!
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