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1 Computing the Filter’s Impulse Response

1.1 Choosing a Window Function

We select a window function from the requirement that the filter’s stopband attenuation be
less than −40 dB, which requires a filter with peak approximation error (PAE) less than
−40 dB [3, 6]. A number of common window functions are listed in Table 2; of these, the
Hann, Hamming and Blackman windows all have a PAE less than −40 dB. In principle, any
of these would work; I chose a Hann window to avoid over-designing the filter, i.e. to avoid
increasing the filter’s transition band width in exchange for larger-than-required stopband
attenuation.

Frequency f Attenuation
f < 500Hz |H| < −40 dB

1000Hz < f < 2000Hz |H| = (0± 1) dB
f > 2500Hz |H| < −40 dB

Table 1: The problem’s filter specifications.

We estimate an appropriate number of window coefficients M by equating the known Hann
window main lobe width of 8π/M (from Table 2) to the filter’s specified transition band
width ∆ω in units of normalized frequency. First, referring to the specifications in Table 1,
the filter’s transition band width1 is

∆f = 1000Hz− 500Hz = 2500Hz− 2000Hz = 500Hz.

The corresponding transition band width in units of normalized frequency is

∆ω = 2π
∆f

fs
= 2π

500Hz

41 000Hz
=

π

41
.

Using the just-computed transition band width ∆ω, an appropriate number of filter
coefficients M is

8π

M
= ∆ω =

π

41
=⇒ M = 328. (1)

I implemented the actual filter with M + 1 = 329 coefficients, since an odd-length impulse
response is more conducive to implementing a bandpass filter.2

Window Function MLW PAE [dB]

Rectangular 4π
M+1 −21

Hann 8π
M −44

Hamming 8π
M −53

Blackman 12π
M −74

Table 2: Approximate main lobe width (MLW), in units of normalized frequency, and
peak approximation error (PAE) of common window functions. M denotes the number of
coefficients used to implement the window (and filter). Taken from [6].

1In this problem the filter’s upper and lower transition widths are both 500Hz. If they were different,
we would use the smaller (i.e. more restrictive) of the two.

2Specifically, implementing a Hilbert transform produces an antisymmetric impulse response, and the
frequency response of filter with odd-length, antisymmetric impulse response has zeros at f = 0Hz (DC)
and at f = fs/2 (the Nyquist rate) [3]. This zero configuration is well-suited to a bandpass filter.
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1.2 Computing Filter’s Impulse Response

Below is an outline of the process used to compute the filter’s impulse response:

1. Compute the impulse response hlp of an ideal lowpass filter.

2. Write the impulse response hpb of an ideal bandpass filter as the difference of two
lowpass impulse responses.

3. Separately compute the impulse response hH of an ideal Hilbert transformer.

4. Write the complete filter’s ideal impulse response as the convolution hbp ∗ hH.

5. Truncate and window the ideal impulse response to get the finite-length impulse
response actually implemented in software.

Ideal Lowpass Impulse Response

The frequency response of an ideal lowpass filter with continuous-time cutoff frequency Ωc

is the rectangular function

Hlp(iΩ) =

{
1 −Ωc < Ω < Ωc

0 otherwise.

The corresponding continuous-time impulse response is

hlp(t) =
1

2π

ˆ ∞

−∞
H(iΩ)eiΩt dΩ =

1

2π

ˆ Ωc

−Ωc

eiΩt dΩ =
1

2πit

[
eiΩt

]Ωc

−Ωc

=
1

2πit

(
eiΩct − e−iΩct

)
=

sinΩct

πt

=
Ωc

π
sinc(Ωct).

We convert the continuous-time impulse response to discrete time (assuming sample rate
fs = 1/T ) by changing t → nT and including an amplitude scaling factor T = 1/fs, i.e.

hlp[n] = T · Ωc

π
sinc[ΩcnT ] =

2fc
fs

sinc

[
2πfc
fs

n

]
. (2)

Ideal Bandpass Impulse Response

The impulse response of an ideal bandpass filter with high and low passband frequencies fhigh
and flow may be constructed as the difference of two lowpass filters with cutoff frequencies
fhigh and flow, respectively, i.e.

hbp[n] = hlp[n; fhigh]− hlp[n; flow]

=
2fhigh
fs

sinc

[
2πfhigh

fs
n

]
− 2flow

fs
sinc

[
2πflow
fs

n

]
.

This impulse response has a removable discontinuity at n = 0 which must be treated
separately in a computer implementation. Using the limit limx→0 sincx = 1, this is

hbp[0] =
2

fs
(fhigh − flow).
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Ideal Hilbert Transformer Impulse Response

The frequency response of an Hilbert transformer for frequencies in the range (−Ω0,Ω0) is

HH(iΩ) =


e−iπ

2 −Ω0 < Ω < 0

e+iπ
2 0 < Ω < Ω0

0 otherwise.

The corresponding continuous-time impulse response is

hH(t) =
1

2π

ˆ ∞

−∞
H(iΩ)eiΩt dΩ =

1

2π

ˆ 0

−Ω0

e−iπ
2 eiΩt dΩ +

1

2π

ˆ Ω0

0
e+iπ

2 eiΩt dΩ

=
1

2πit

[
e+i(Ω0t+π/2) − e−i(Ω0t+π/2)

]
− 1

2πit

(
e+iπ

2 − e−iπ
2

)
=

1

πt
sin(Ω0t+ π/2)− sin(π/2)

πt

=
1

πt

[
cos(Ω0t)− 1

]
.

As in Equation 2 for the lowpass filter, we convert to discrete time by changing t → nT
and including an amplitude scaling factor T = 1/fs, i.e.

hH[n] =
T

πnT

(
cos[Ω0nT ]− 1

)
=

1

πn

(
cos

[
2πf0
fs

n

]
− 1

)
.

If the Hilbert transformer is to apply to the entire discrete frequency domain, i.e if f0 = fs/2,
the impulse response simplifies considerably to

hH[n] =
1

πn

(
cos

[
2πfs
2fs

n

]
− 1

)
=

1

πn

(
cos[πn]− 1

)
=

1

πn

[
(−1)n − 1

]
.

However, this problem’s specifications require the filter shift phase by π/2 only in the
passband, so I choose a Hilbert transform cutoff frequency f0 = 3000Hz instead of using
the Nyquist rate f0 = fs/2 = 22 500Hz.

Complete Ideal Impulse Response

Convolution is commutative and associative, which simplifies the practical implementation
of the filter’s impulse response. Namely, processing an input signal, say x, with a bandpass
filter with impulse response hbp and then passing the filtered signal, say xf , through a
Hilbert transformer with impulse response hH is equivalent to passing the input x through
a single system whose impulse response is the convolution of hbp and hH. This is shown
symbolically in Equation 3 and graphically in Figure 1.

y = hH ∗ xf = hH ∗ (hbp ∗ x) = (hH ∗ hbp) ∗ x ≡ htotal ∗ x. (3)

The complete filter’s ideal impulse response is thus

hideal = hbp ∗ hH.
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hbp hH yx xf ⇐⇒ hbp ∗ hH yx

Figure 1: Convolution’s associativity simplifies the filter implementation: the left and right
systems produce identical outputs, but if hbp ∗ hH is computed beforehand, implementing
the right version in real-time requires half as many convolutions. C.f. Equation 3.

Windowed Impulse Response

The discrete Hann window function for a filter with M + 1 coefficients is

w[n] =

{
1
2

(
1 + cos

[
2πn
M

])
n = −M

2 , . . . ,
M
2

0 otherwise.

The corresponding causal window, with center shifted to n = M/2, is

wcausal[n] = w[n−M/2] =

{
1
2

(
1− cos

[
2πn
M

])
n = 0, . . . ,M

0 otherwise.

The windowed impulse response is

h[n] = hideal[n−M/2]wcausal[n].

The code used to compute h[n] can be found in the get_h function in the file kernels.py
in the project’s source code repository on GitHub at https://github.com/ejmastnak/
hilbert-bandpass.
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Figure 2: Windowed impulse responses of the bandpass and Hilbert transformer stages (left
and center), together with their convolution (right).

1.3 Visualizing the Filter’s Impulse and Frequency Responses

Figure 2 shows the windowed impulse responses of the bandpass stage, the Hilbert trans-
former stage, and the convolution of the two stages. Figure 3 shows the frequency response
of the convolved bandpass-Hilbert system both with and without windowing. As expected
theoretically, windowing the impulse response produces a far smoother frequency response
and better stopband attenuation at the expense of a wider transition band. Figure 4
attempts to demonstrate that the filter meets the specifications in Table 1. Finally, Figure
5 shows the filter’s phase response—the discontinuity in phase angle at f = 0Hz and
θ ≈ −45◦ shows the phase-shifting effect of the Hilbert transformer.
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Figure 3: Windowed and un-windowed frequency responses.

500 750 1000 1250 1500 1750 2000 2250 2500

Frequency f [Hz]

-40

-35

-30

-25

-20

-15

-10

-5

0

A
tt

en
u
at

io
n
 |H

| [
d
B

]

Windowed Frequency Response

Figure 4: The filter’s frequency response in the transition and passband regions. The curve
must not touch the shaded grey areas to meet the filter specifications in Table 1.
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Figure 5: The filter’s phase response. The phase is linear in the passband, while the
discontinuity at f = 0Hz corresponds to the Hilbert transformer phase shift.
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2 Implementing Real-time Filtering

The hardware and software used to implement the filter is summarized below:

• Computer: 13-inch, 2012 MacBook Pro laptop with a 2.5GHz Intel Core i5 processor
running macOS 10.14.6. Audio was captured using the laptop’s built-in 44 100Hz,
2-channel microphone, but only one channel was used as filter input.

• I used version 19 of the PortAudio library [1], which is an audio I/O library written
in C, to capture the audio input stream from the computer’s microphone.

• I wrote the filter program in Python, using the PyAudio library [5] for Python bindings
for the C code in PortAudio and the NumPy library [7] for efficient implementation of
the fast Fourier transform, convolution, and common mathematical functions.

The full project source code and a video demonstration of the filter’s real-time functionality
can be found on GitHub at https://github.com/ejmastnak/hilbert-bandpass, while a
summary of how the real-time filtering works follows below.

Audio data is captured from the microphone using PortAudio with an input stream with
the specifications shown in Table 3. The number of frames per buffer is chosen so that the
fast Fourier transform used to convolve the impulse response with the audio buffer has 4096
elements (i.e. a power of two, which is a general best practice for FFT algorithms). The
initialization of the audio stream is shown in Listing 1.

Parameter Value
Sample rate 44 100Hz

Format 32-bit floating point
Channels 1

Frames per buffer 4096− len(h)+ 1

Table 3: Audio stream parameteters. len(h) is the length of the filter’s impulse response.

import numpy as np
import pyaudio
h = get_impulse_response() # load filter's impulse response
CHUNK = 4096 - len(h) + 1 # frames per buffer
pa = pyaudio.PyAudio()
stream = pa.open(format=pyaudio.paFloat32, # 32-bit floating point

channels=1, # use only single-channel audio
rate=44100, # sample rate [Hz]
input=True, # use stream as an input stream
frames_per_buffer=CHUNK)

stream.start_stream()

Listing 1: Source code for initializing the audio stream.

Data is read from the audio stream as a hexadecimal Python byte string, which is then
converted to an array of 32-bit floating point numbers with NumPy’s frombuffer function.
For orientation, a representative audio stream output buffer is shown in Listing 2. The
real-time filtering process works by convolving each buffer of audio data with the filter’s
impulse response using the overlap-add method [4]. The code implementing the overlap-add
method, with explanatory comments, appears in Listing 3.
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>>> buffer = stream.read(10) # read 10 frames
b'\x00\x82\x00\xe0\x9a\x00\x8c\xb0\x00<\x97\x00\xa0\x9c\x00\xfc\x92\x00

\xc4\xbb\x00\x00\xf8\xa3\x00\x10'↪→

>>> buffer_float32 = np.frombuffer(data, dtype=np.float32)
[0.2548523 0.30249023 0.34481812 0.29537964 0.3059082 0.28707886

0.36672974 0.23553467 0.32025146 0.22174072]↪→

Listing 2: Representative audio stream output as a byte string and corresponding 32-bit
floating point array (which has been rounded for conciseness).

One specific feature of the code in Listing 3 deserves special comment. First, here is
the context: the real-time filtering program listens for input audio data and displays a
continuously-updated plot of both the unfiltered input audio waveform and its bandpass-
filtered and Hilbert-transformed version. The input and filtered signal are intentionally
shown together on the same time-domain plot to verify the filter’s phase-shifting property,
as in e.g. Figure 6. Resultantly, it is important that the unfiltered input signal and its
filtered version correctly align in the time domain. FIR filtering inherently introduces a time
delay to the filtered signal equal to the length M of the FIR filter kernel. To compensate
for this delay, the code in Listing 3 creates a delayed copy of the unfiltered input signal by
convolving the raw input signal with a unit impulse centered at M/2. This delayed version
of the input signal and its FIR-filtered analog are then correctly aligned in the time domain.

3 Representative Filtered Signals

The following few figures were generated offline, all with sample rate fs = 44 100Hz, and
are meant to demonstrate the filter’s desired phase shift and bandpass properties in an
offline scenario. A video showing the filter working with real-time audio signals can be
found on the project’s GitHub page.
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Figure 6: Demonstration of the filter’s phase-shifting property with a 1500Hz sinusoid. The
dotted curve with blue circular markers is a copy of the input signal shifted by π/2, which
the filtered output (in maroon-red) aligns with nicely, as it must to satisfy the phase-shifting
property of a Hilbert transformer.
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import numpy as np

# Load filter's impulse response from separate function
h = get_impulse_response()
M = len(h) # length of impulse response

# Create a delay-by-M kernel to compensate FIR-induced delay
h_delay_by_M = np.zeros(M, dtype=np.float32)
h_delay_by_M[int((M - 1)/2)] = 1.0

# Declare global variable to store last `M` points of previous
# iteration's convolution of filter kernel and audio buffer
filter_conv_prev = np.zeros(M - 1) # preallocate with zeros

# Global variable to store last `M` points of previous
# iteration's convolution of delay-by-M kernel and audio buffer
conv_delayed_prev = np.zeros(M - 1)

def get_filtered_audio_buffer(buffer_in):
"""
Applies the Hilbert transform filter to the inputted audio buffer
`buffer_in`. Returns filtered output `buffer_out` and delayed
copy of `buffer_in` aligned in time with `buffer_out`.
"""
L = len(buffer_in)
# Convolve kernel `h` and `buffer_in` and store first `L` points
filter_conv = np.convolve(h, buffer_in)
buffer_out = filter_conv[:L]

# Append last `M-1` elements of previous iteration's convolution
# to first `M-1` elements of current convolution
buffer_out[:M - 1] += filter_conv_prev

# Save last `M-1` elements of this iteration's convolution for
# use in the next iteration
filter_conv_prev = filter_conv[-(M - 1):]

# Create delayed copy of `buffer_in` aligning with `buffer_out`
delay_conv = np.convolve(h_delay_by_M, buffer_in)
buffer_in_delayed = delay_conv[:L]
buffer_in_delayed[:M - 1] += delay_conv_prev
delay_conv_prev = delay_conv[-(M - 1):]

return buffer_in_delayed, buffer_out

Listing 3: The function get_filtered_buffer implements the overlap-add method used
for real-time filtering. Complete code for real-time filtering is in the realtime.py file in the
project’s source code repository, https://github.com/ejmastnak/hilbert-bandpass.
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Figure 7: The filter’s time domain and frequency domain output in response to a 10-term
Fourier series approximation of a square wave with fundamental frequency f0 = 1200Hz.
All higher harmonics are filtered out, leaving only the 1200Hz sinusoidal carrier wave in
the filtered output. Note also the 90◦ phase shift between the input and output signals.
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Figure 8: The filter’s time domain and frequency domain responses to a signal containing
sinusoidal terms with frequencies (300, 500, 1500, 2500, 2700)Hz, all of equal amplitude.
Only the 1500Hz component in the passband is passed through the filter.
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